Thứ Bảy, 8 tháng 3, 2014

43 de thi tuyen sinh mon Toan vao lop 10 ChuyenTHPTHSG

Đề thi môn Toán Su tầm
Đề thi toán 6 (thời gian 90 phút)
Bài 1. (5,5 điểm)
1) Cho biểu thức. A =
2
5


n
a) Tìm các số nguyên n để biểu thức A là phân số
b) Tìm các số nguyên n để biểu thức A là số nguyên
2) Tìm x biết:
a) x chia hết cho 12; x chia hết cho 25; x chia hết cho 30;
5000

x
b) (3x - 2
4
)7
3
=2.7
4
c)|x-5| =16+2(-3)
3) Bạn Đức đánh số trang sách bằng các số tự nhiên từ 1 đến 145. Hỏi bạn Đức đã
sử dụng bao nhiêu chữ số? Trong những chữ số đã sử dụng thì có bao nhiêu chữ số 0?
Bài 2. ( 2 điểm) Cho đoạn thẳng AB. Trên tia đối của tia AB lấy điểm M, trên tia
đối của tia BA lấy điểm N sao cho AM = BN. So sánh độ dài các đoạn thẳng BM và
AN.
Bài 3( 2,5 điểm) Cho góc XOY = 100
0
. Vẽ tia phân giác Oz của góc XOY; Vẽ tia
Ot nằm trong góc XOY sao cho YOT = 25
0
1) Chứng tỏ tia OT nằm giữa hai tia OZ và OY
2) Tính số đo góc ZOT
3) Chứng tỏ rằng OT là tia phân giác của góc ZOY
Môn toán 7 (thời gian làm bài 90 phút)
Bài 1. ( 3 điểm)
a) Tính
Nguyễn Hồng Quân Trờng THCS Đông Tiến
5
Đề thi môn Toán Su tầm
2004
3
2003
3
2002
3
2004
2
2003
2
2002
2
2005
5
2004
5
2003
5
2005
1
2004
1
2003
1
+
+

+
+
b) Biết . 13+ 23+ +103 = 3025. Tính S = 23+43+63+.+203
c) Cho A =
yx
xyxx
+
+
2
223
425,03
Tính giá trị của A biết x = 1/2, y là số nguyên âm lớn nhất
Bài 2. (1 điểm) Tìm x biết : 3x+3x+1+3x+2 = 117
Bài 3. ( 1 điểm) Một con thỏ chạy trên một con đờng mà hai phần ba con đờng
băng qua đồng cỏ và đoạn đờng còn lại đi qua đầm lầy. Thời gian thỏ đi trên đồng cỏ
bằng nửa thời gian đi trên đầm lầy. Hỏi vận tốc của thỏ chạy trên đoạn đờng qua đầm
lầy hay vận tốc của thỏ chạy trên đoạn đờng qua đồng cỏ lớn hơn và lớn hơn bao nhiêu
lần?
Bài 4.( 2 điểm) Cho tam giác nhọn ABC. Vẽ về phía ngoài tam giác ABC các tam
giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. Chứng minh rằng:
a)
ADCABE
=
b) Góc BMC = 1200
Bài 5. ( 3 điểm) Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = 4 cm, HC =
9 cm. Từ H vẽ tia Hx vuông góc với đờng thẳng BC. Lấy A thuộc tia Hx sao cho HA =
6 cm .
a) Tam giác ABC l tam giác gì? Chứng minh điều đó.
b) Trên tia HC, lấy HD = HA. Từ D vẽ đờng thẳng song song với AH cắt AC tại
E. Chứng minh rằng AE = AB
Đề thi học sinh giỏi thĩ xã Hà Đông ( 2003-2004)
Toán 7 (120)
Bài 1( 4 điểm) Cho các đa thức:
Nguyễn Hồng Quân Trờng THCS Đông Tiến
6
Đề thi môn Toán Su tầm
f(x) = 2x
5
- 4x
3
+x
2
-2x +2
g(x) = x
5
- 2x
4
+x
2
- 5x +3
h(x) = x
4
+4x
3
+3x
2
-8x + 4
16
3
a)Tính M(x) = f(x) -2 g(x) + h(x)
b) Tính giá trị của M(x) khi x =
25,0

c) Có giá trị nào của x để M(x) = 0?
Bài 2. (4 điểm)
a) Tìm 3 số a,b,c biết: 3a=2b,5b=7c, và 3a +5c-7b=60
b) Tìm x biết |2x-3|-x=|2-x|
Bài 3. (4) Tìm giá trị nguyên của m và n để biểu thức
a)P =
m

6
2
có giá trị lớn nhất
b) Q
3
8


=
n
n
có giá trị nguyên nhỏ nhất
Bài 4.(5) Cho tam giác ABC có AB<AC,AB=c,AC=b. Qua M là trung điểm của
BC ngời ta kẻ đờng vuông góc với đờng phân giác trong của góc A đờng này cắt các đ-
ờng thẳng AB, AC lần lợt tại D,E
a) Chứng minh BD=CE
b) Tính AD và BD theo b,c
Bài 5. (3) Cho tam giác ABC cân tại A, góc A= 100
0
.D là một điểm thuộc miền
trong của tam giác ABC sao cho góc DBC =10
0
, góc DCB =20
0
. Tính góc ADB?
Toán 8 (150)
Bài 1(5) Cho







+
+
+
=
3
1
2
3
2
xx
x
A
:
x
xx
x
x
3
13
1
42
2
+

+

a) Rút gọn A
b) Tìm A để x= 6013
Nguyễn Hồng Quân Trờng THCS Đông Tiến
7
Đề thi môn Toán Su tầm
c) Tìm x để A <0
d) Tìm x để A nguyên
Bài 2.(3) Cho A=(x+y+z)
3
-x
3
-y
3
-z
3
a) Rút gọn A
b) Chứng minh A chia hết cho 6 với mọi x,y,z nguyên
Bài 3.( 4) Sau một loạt bắn đạn thật của 3 chiến sĩ Hùng, Dũng, Cờng ( mỗi ngời
bắn một viên), ngời báo bia cho biết có ba điểm khác nhau là 8,9,10 và thông báo:
a) Hùng đạt điểm 10
b) Dũng không đạt điểm 10
c) Cờng không đạt điểm 9
Đồng thời cho biết trong 3 thông báo trên chỉ có một thông báo là đúng, hãy cho
biết kết quả điểm bắn của mỗi ngời.
Bài 4(5) Cho tam giác ABC vuông tại A, AB= c,AC=b. Lần lợt dựng trên AB, AC
bên ngoài tam giác ABC các tam giác vuông cân ABD tại D, ACE tại E.
a) Chứng minh rằng các điểm E, A, D thẳng hàng
b) Gọi trung điểm của BC là I, chứng minh tam giác DIE vuông
c) Tính diện tích tứ giác BDEC
d) Đờng thẳng EDcắt đờng thẳng CB tại K. Tính các tỉ số sau theo b,c
Bài 5(3) Cho tứ giác ABCD,M là một điểm trên CD( khác C, D)
Chứng minh rằng MA + MB < Max {CA+CB; DA+DB}( Là giá trị lớn nhất
trong 2 giá trị CA+CB;DA+DB)
Đề thi học sinh giỏi quận hoàn kiếm (2003-2004)
Toán 7 (120)
Bài 1( 4) Giải phơng trình
04
107
309
105
311
103
313
101
315
=+

+

+

+

xxxx
Nguyễn Hồng Quân Trờng THCS Đông Tiến
8
Đề thi môn Toán Su tầm
Bài 2(4) Cho các số nguyên dơng x,y,z . Chứng minh rằng:
21
<
+
+
+
+
+
<
xz
z
zy
y
yx
x
Bài 3(4) Tìm các nghiệm nguyên của phơng trình
(2a+5b+1)(2
|a|
+a
2
+a+b)=105
Bài 4(3) Ba bạn A,B,C chơi một cỗ bài gồm 3 quân. Trên mỗi quân bài có viết
một số tự nhiên( các số khác nhau và khác 0). Mỗi ngời đợc phát một quân bài và đợc
nhận số kẹo bằng đúng số đã viết trên quân bài ấy. Sau đó các quân bài đợc thu lại,
xáo trộn và phát lại. Sau hơn 2 lần chơi, A nhận đợc 20 cái kẹo, B nhận đợc 10 cái kẹo,
C nhận đợc 9 cái kẹo. Hỏi số đã ghi trên mỗi quân bài? Biết số lớn nhất đợc viết trên
các quân bài lớn hơn 9.
Bài 5(5) Cho tam giác ABC cân tại A, góc A= góc C= 80
0
. Từ B và C kẻ các đ-
ờng thẳng cắt các cạnh tơng ứng ở Dvà E sao cho góc CBD = 60
0
và góc BCE =50
0
Tính góc BDE
Toán 8( 120 phút)
Bài 1(4)
Giải phơng trình:
110.100
1

12.2
1
11.1
1
110.10
1

102.2
1
101.1
1
+++=






+++
x
Bài 2(4)
Tìm x để hàm số y= x/(x+2004)
2
có giá trị lớn nhất
Nguyễn Hồng Quân Trờng THCS Đông Tiến
9
Đề thi môn Toán Su tầm
Bài 3( 4)
Cho phơng trình
2
3
2
35
1
3
2

+
=



+
+
xx
ax
x
a
x
a
Với giá trị nào của a thì phơng trình có nghiệm không nhỏ hơn 1?
Bài 4(4)
Từ điểm O thuộc miền trong của hình thang cân ABCD( AB=CD) nối các đỉnh
của hình thang đợc 4 đoạn thẳng OA,OB,OC,OD. Chứng minh rằng từ 4 đoạn thẳng
nhận đợc, có thể dựng đợc một tứ giác nội tiếp hình thang này( mỗi đỉnh của tứ giác
nằm trên một cạnh của hình thang cân)
Bài 5(4)
Cho tam giác ABC có AB= c, BC=a,CA=b. Gọi I
b
,I
c
theo thứ tự là độ dài cảu
các đờng phân giác của góc B và góc C. Chứng minh rằng nếu b>c thì I
b
<I
c
Đề thi vào chuyên 10( Hải Dơng)
thời gian: 150
Bài 1(3) Giải phơng trình:
1) |x
2
+2x-3|+|x
2
-3x+2|=27
2)
20
1
)1(
1
)2(
1
2
=



x
xx
Nguyễn Hồng Quân Trờng THCS Đông Tiến
10
Đề thi môn Toán Su tầm
Bài 2(1) Cho 3 số thực dơng a,b,c và ab>c; a
3
+b
3
=c
3
+1. Chứng minh rằng a+b>
c+1
Bài 3(2) Cho a,b,c,x,y là các số thực thoả mãn các đẳng thức sau: x+y=a,
x
3
+y
3
=b
3
,x
5
+y
5
=c
5
. Tìm đẳng thức liên hệ giữa a,b,c không phụ thuộc x,y.
Bài 4(1,5) Chứng minh rằng phơng trình (n+1)x
2
+2x-n(n+2)(n+3)=0 có nghiệm
là số hữu tỉ với mọi số nguyên n
Bài 5(2,5) Cho đờng tròn tâm O và dây AB( AB không đi qua O). M là điểm trên
đờng tròn sao cho tam giác AMB là tam giác nhọn, đờng phân giác của góc MAB và
góc MBA cắt đờng tròn tâm O lần lợt tại P và Q. Gọi I là giao điểm của AP và BQ
1) Chứng minh rằng MI vuông góc với PQ
2) Chứng minh tiếp tuyến chung của đờng tròn tâm P tiếp xúc với MB và đờng
tròn tâm Q tiếp xúc với MA luôn song song với một đờng thẳng cố định khi M thay
đổi.
*Chuyên tỉnh Bà Địa Vũng Tàu. (2004-2005)
thời gian:150 phút
Bài 1:
1/iải phơng trình:
4
2
1
2
2
5
5
++=+
x
x
x
x
2/chứng minh không tồn tại các số nguyên x,y,z thoả mãn:
Nguyễn Hồng Quân Trờng THCS Đông Tiến
11
Đề thi môn Toán Su tầm
x
3
+y
3
+z
3
=x +y+z+2005
Bài 2:
Cho hệ phơng trình:
x
2
+xy = a(y 1)
y
2
+xy = a(x-1)
1/ giải hệ khi a= -1
2/ tìm các giá trị của a để hệ có nghiệm duy nhất
Bài 3:
1/ cho x,y,z là 3 số thực thoả mãn x
2
+ y
2
+z
2
=1. Tìm giá trị nhỏ nhất của A =2xy
+yz+ zx.
2/ Tìm tất cả các giá trị của m để phơng trình sau có 4 nghiệm phân biệt:
x
4
2x
3
+2(m+1)x
2
(2m+1)x +m(m+1) =0
Bài 4:
Cho tam giác ABC nội tiếp đờng tròn (O) , D là một điểm trên cung BC không
chứa đỉnh A. Gọi I,K và H lần lợt là hình chiếu cuả D trên các đờng thẳng BC,AB,và
AC. Đờng thẳng qua D song song với BC cắt đờng tròn tại N ( N# D); AN cắt BC tại
M. Chứng minh:
1/Tam giác DKI đồng dạng với tam giác BAM.
2/
DH
AC
DK
AB
DI
BC
+=
*Chuyên toán- tin tỉnh Thái Bình (2005-2006,150 phút)
Bài 1 (3đ):
1. Giải pt:
1231
=+
xxx
2. Trong hệ trục toạ độ Oxy hãy tìm trên đờng thẳng y= 2x +1 những điểm
M(x;y) thoả mãn điều kiện: y
2
5y
x
+6x = 0.
Bài 2(2,5đ):
1. Cho pt: (m+1)x
2
(m-1)x +m+3 = 0 (m là tham số)
tìm tất cả các giá trị của m dể pt có nghiệm đều là những số nguyên.
Nguyễn Hồng Quân Trờng THCS Đông Tiến
12
Đề thi môn Toán Su tầm
2. Cho ba số x,y,z . Đặt a= x +y +z, b= xy +yz + zx, c= xyz. Chứng minh các ph-
ơng trình sau đều có nghiệm:
t
2
+ 2at +3b =0; at
2
2bt + 3c =0
Bài 3(3đ)
Cho tam giác ABC.
1. Gọi M là trung điểm của AC. Cho biết BM = AC. Gọi D là điểm đối xứng của
B qua A, E là điểm đối xứng của M qua C. chứng minh: DM vuông góc với BE.
2. Lấy một điểm O bất kỳ nằm trong tam giác ABC. Các tia AO,BO,CO cắt các
cạnh BC,CA,AB theo thứ tự tại các điểm D,E,F. chứng minh:
a)
CF
OF
BE
OE
AD
OD
++
=1
b)
64111







+






+






+
OF
CF
OE
BE
OD
AD
Bài 4(0.75đ)
xét các đa thức P(x)= x
3
+ ax
2
+bx +c
Q(x)=x
2
+x + 2005
Biết phơng trình P(x)=0 có 3 nghiệm phân biệt, còn pt P(Q(x)) =0 vô nghiệm.
Chứng minh rằng P(2005)>1/64
Bài 5 (0,75đ)
Có hay không 2005 điểm phân biệt trên mặt phẳng mà bất kỳ ba điểm nào trong
chúng đều tạo thành một tam giác có góc tù.
Đề thi tuyển sinh lớp 10 tỉnh Hải Dơng. (2004-2005)
thời gian :150
Bài 1: (3đ)
Trong hệ trục toạ độ Oxy, cho hàm số y= (m+2)x
2
(*)
1/ tìm m để đồ thị hàm số (*) đi qua điểm:
a) A(-1;3), b) B(
2
; -1), c) C(1/2; 5)
2/ thay m=0. Tìm toạ độ giao điểm của đồ thị (*) với đồ thị hàm số y= x+1.
Bài 2: (3đ)
Nguyễn Hồng Quân Trờng THCS Đông Tiến
13
Đề thi môn Toán Su tầm
Cho hệ phơng trình:
(m-1)x + y = m
x + (m-1)y =2

gọi nghiệm của hệ phơng trình là (x;y).
1/ Tìm đẳng thức liên hệ giữa x và y không phụ thuộc vào m.
2/ Tìm giá trị của m thoả mãn 2x
2
-7y =1
3/ Tìm các giá trị của m để biểu thức
yx
yx
+

32
nhận giá trị nguyên.
Bài 3 (3đ)
Cho tam giác ABC (
0
90

=
A
). Từ B dựng đoạn thẳng BD về phía ngoài tam giác
ABC sao cho BC=BD và
DBCCBA

=
; gọi I là trung điểm của CD; AI cắt BC tại E.
Chứng minh:
1.
IBDIAC


=
2. ABE là tam giác cân.
3. AB.CD = BC.AE
Bài 4: (1đ)
tính giá trị biểu thức A=
113
934
24
35
++
+
xx
xxx
với
4
1
1
2
=
++
xx
x
*Trờng Chu Văn An và HN AMSTERDAM(2005 2006)
(dành cho chuyên Toán và chuyên Tin; thời gian :150)
Bài 1: (2đ)
Cho P = (a+b)(b+c)(c+a) abc với a,b,c là các số nguyên. Chứng minh nếu a +b +c chia hết
cho 4 thì P chia hết cho 4.
Bài 2(2đ)
Cho hệ phơng trình:
(x+y)
4
+13 = 6x
2
y
2
+ m
xy(x
2
+y
2
)=m
1. Giaỉ hệ với m= -10.
Nguyễn Hồng Quân Trờng THCS Đông Tiến
14

Không có nhận xét nào:

Đăng nhận xét