Thứ Hai, 21 tháng 4, 2014

bai 6 hình 9 CUNG CHUA GOC


LINK DOWNLOAD MIỄN PHÍ TÀI LIỆU "bai 6 hình 9 CUNG CHUA GOC": http://123doc.vn/document/570756-bai-6-hinh-9-cung-chua-goc.htm



Do đó tâm O phải là giao điểm của :
Đường trung trực
của đoạn thẳng AB cố định
với
Một đường thẳng khác cũng cố định
I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
GT
KL
AMB = α không đổi
AB cố định,
Quỹ tích các điểm M
A B
( SGK )
- Như vậy ta chứng minh O là tâm của
đường tròn chứa cung AmB là một điểm
cố định không phụ thuộc vào M.
!
m
- Xét một nửa mặt phẳng bờ AB
- Giả sử M là điểm thoả mãn AMB = α
(nằm trong nửa mặt phẳng đang xét)
- Xét cung AmB đi qua 3 điểm A, M, B
CUNG CHỨA GÓC
α
M
d
d
1
M’
α
d’
O

I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
GT
KL
AMB = α không đổi
AB cố định,
Quỹ tích các điểm M
A B
α
( SGK )
M
α
x
m
n
y
Tìm mối quan hệ giữa
góc xAB và α ?
- Trong nửa mp bờ AB không chứa M, kẻ
tiếp tuyến Ax của đường tròn đi qua ba
điểm A, M, B
lúc này góc tạo bởi Ax và AB
bằng α , do đó tia Ax cố định
- Vậy M thoả AMB = α thuộc cung tròn
AmB cố định
- Tâm O phải nằm trên đường thẳng Ay
vuông góc với Ax tại A.
Mặc khác O phải nằm trên đường trung
trực d của đoạn thẳng AB
Vậy O chính là giao điểm của d và Ay,
nên O cố định
d
CUNG CHỨA GÓC
- Như vậy ta chứng minh O là tâm của
đường tròn chứa cung AmB là một điểm
cố định không phụ thuộc vào M.
- Xét một nửa mặt phẳng bờ AB
- Giả sử M là điểm thoả mãn AMB = α
(nằm trong nửa mặt phẳng đang xét)
- Xét cung AmB đi qua 3 điểm A, M, B
O

I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
A B
α
( SGK )
M
α
x
n
y
⇒ M thuộc cung tròn AmB cố định
AB cố định; AMB = α không đổi
m
d
CUNG CHỨA GÓC
- Như vậy ta chứng minh O là tâm của
đường tròn chứa cung AmB là một điểm
cố định không phụ thuộc vào M.
- Xét một nửa mặt phẳng bờ AB
- Giả sử M là điểm thoả mãn AMB = α
(nằm trong nửa mặt phẳng đang xét)
- Xét cung AmB đi qua 3 điểm A, M, B
- Trong nửa mp bờ AB không chứa M, kẻ
tiếp tuyến Ax của đường tròn đi qua ba
điểm A, M, B
lúc này góc tạo bởi Ax và AB
bằng α , do đó tia Ax cố định
- Vậy M thoả AMB = α thuộc cung tròn
AmB cố định
- Tâm O phải nằm trên đường thẳng Ay
vuông góc với Ax tại A.
Mặc khác O phải nằm trên đường trung
trực d của đoạn thẳng AB
Vậy O chính là giao điểm của d và Ay,
nên O cố định
O

I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
- Vì AM’B là góc nội tiếp, xAB là góc tạo bởi tia tiếp tuyến và dây cung, hai
góc này cùng chắn cung AnB nên : AM’B = xAB = α
AB cố định; M’ thuộc cung AmB
Thì AM’B = α hay không ?
M’
A B
O
α
α
m
n
x
⇒ AM’B = α
b- Phần đảo : (SGK)
CUNG CHỨA GÓC
( SGK )

I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
CUNG CHỨA GÓC
( SGK )
AB cố định; M’ thuộc cung AmB
=> AM’B = α
M’
A B
O
α
α
m
n
x
b- Phần đảo : (SGK)

I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
M
A B
O
α
α
M’
m
m’
O’
Vậy mỗi cung trên được gọi là
một cung chứa góc α dựng trên AB
CUNG CHỨA GÓC
( SGK )

I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
CUNG CHỨA GÓC
( SGK )

I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
A B
M
O
x
m
n
α
d
α
CUNG CHỨA GÓC
( SGK )

I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
c. Kết luận : ( SGK )
Vậy với đoạn thẳng AB và góc α (0
o
< α <180
o
) cho trước thì quỹ tích các
điểm M thoả mãn AMB = α là hai cung chứa góc α dựng trên đoạn AB
CUNG CHỨA GÓC
( SGK )

( SGK )
c. Kết luận : ( SGK )
I- BÀI TOÁN QUỸ TÍCH “CUNG CHỨA GÓC”:
1/ Bài toán :
CUNG CHỨA GÓC
M
A B
O
α
α
M’
m’
O’
m
- Hai cung chứa góc α nói trên là
hai cung tròn đối xứng nhau qua
AB
- Hai điểm A, B được coi là thuộc
quỹ tích
- Quỹ tích các điểm nhìn đoạn
thẳng AB cho trước dưới một góc
vuông là đường tròn đường kính
AB

Không có nhận xét nào:

Đăng nhận xét